Contents

Contributors xi
Preface xv
Previous Volumes in Series xvii

SECTION 1 RYR Ca$^{2+}$ RELEASE CHANNELS

CHAPTER 1 RyRs: Their Disposition, Frequency, and Relationships with Other Proteins of Calcium Release Units
Clara Franzini-Armstrong
 I. Overview 3
 II. Introduction 4
 III. Cardiac CRUs 4
 IV. CRUs in Skeletal and Invertebrate Body Muscles 8
 V. Factors Affecting CRU Assembly in Skeletal and Cardiac Muscles 12
 VI. Isoform-Specific Features of RyR Distribution 16
 VII. Architecture of SR and T Tubule Membranes is Muscle- and Fiber-Type Specific 17
 References 22

CHAPTER 2 Electron Microscopy of Ryanodine Receptors
Terence C. Wagenknecht and Zheng Liu
 I. Overview 27
 II. Introduction 28
 III. Cryo-EM of Macromolecular Complexes 28
 IV. Three-Dimensional Architecture of RyR as Determined by Cryo-EM 29
 V. α-Helices in the TM Region and the Mechanism of Calcium Channel Gating 32
VI. Synergism of 3D Cryo-EM and Other Biophysical/Biochemical Techniques 34
VII. Outlook and Perspectives 40
References 42

CHAPTER 3 The Ryanodine Receptor Pore: Is There a Consensus View?
Joanne Carney, Sammy A. Mason, Cedric Viero, and Alan J. Williams

I. Overview 49
II. Introduction 50
III. Ion Handling in RyR 51
IV. Where is the PFR in the RyR Channel? 53
V. Attempts to Identify the Structure of the RyR PFR 58
VI. Theoretical Approaches to Understanding the Mechanisms Underlying Ion Translocation and Discrimination in RyR 61
VII. Testing Physical and Theoretical Models of the RyR PFR by Residue Substitution 62
VIII. Concluding Remarks 64
References 64

CHAPTER 4 Regulation of RyR Channel Gating by Ca^{2+}, Mg^{2+} and ATP
Derek R. Laver

I. Overview 69
II. Introduction 70
III. RyR2 in Cardiac Contraction and Pacemaking 70
IV. Four Ca^{2+} Sensing Mechanisms for RyR2 71
V. Synergistic Ca^{2+}-Activation via Cytoplasmic and Luminal Facing Binding Sites 74
VI. Channel Open Times and the Role of Ca^{2+} Feed-Through 76
VII. Three Mechanisms for Mg^{2+}-Inhibition of RyR2 77
VIII. A Model for Ca^{2+} and Mg^{2+} Regulation of RyR2 80
IX. Adenine Neucleotides 82
CHAPTER 5 Regulation of Ryanodine Receptor Ion Channels Through Posttranslational Modifications

Gerhard Meissner

I. Overview 91
II. Introduction 92
III. RyR1 and RyR2 Phosphorylation 93
IV. RyR Modulation by Reactive Oxygen and Nitrogen Species 99
V. Conclusions 104
References 105

CHAPTER 6 Crosstalk via the Sarcoplasmic Gap: The DHPR–RyR Interaction

Manfred Grabner and Anamika Dayal

I. Overview 115
II. DHPR and RyR Arrangement in Skeletal and Cardiac Muscle Membranes—Basis for Differences in the EC Coupling Mechanism 116
III. Structural Domains Involved in skDHPR–RyR1 Interaction 119
IV. The Role of Intracellular Molecular Regions Besides the \(\alpha_{1S} \) II–III Loop in skDHPR–RyR1 Interaction 126
V. Intracellular Molecular Regions of \(\alpha_{1S} \) Involved in Tetrad Formation 128
VI. The Role of the Accessory skDHPR Subunits in Interaction with RyR1 128
VII. Conclusion 131
References 133

CHAPTER 7 Ryanodinopathies: RyR-Linked Muscle Diseases

Lan Wei and Robert T. Dirksen

I. Overview 139
II. Introduction 140
III. RyR1-Linked Diseases 142
IV. RyR2-Linked Diseases 153
V. Conclusions and Perspectives 158
References 160

SECTION 2 IP_{3}R Ca^{2+} RELEASE CHANNELS

CHAPTER 8 3D Structure of IP_{3} Receptor
Irina I. Serysheva and Steven J. Ludtke

I. Overview 171
II. Introduction 172
III. Predicted Topology of IP_{3}R Molecule 173
IV. Arrangement of IP_{3}R in the Native Membrane 175
V. 3D Structure of IP_{3}R by Electron Microscopy 176
VI. Crystal Structures of Isolated Domains 182
VII. Conformational Transitions in IP_{3}R Channel 183
VIII. Future Outlook 185
References 186

CHAPTER 9 Molecular Architecture of the Inositol 1,4,5-Trisphosphate Receptor Pore
Darren F. Boehning

I. Overview 191
II. Introduction 192
III. The Transmembrane Domains 194
IV. The Ion Conduction Pore: Electrophysiologic Studies 197
V. The Ion Conduction Pore: Modeling Studies 202
References 204

CHAPTER 10 Adenophostins: High-Affinity Agonists of IP_{3} Receptors
Ana M. Rossi, Andrew M. Riley, Barry V. L. Potter, and Colin W. Taylor

I. Overview 209
II. Discovery and Initial Characterization of Adenophostins 210
III. Structure and Synthesis of Adenophostin 212
IV. Activation of IP_{3}R by Adenophostin 216
CHAPTER 11 Regulation of IP$_3$R Channel Gating by Ca$^{2+}$ and Ca$^{2+}$ Binding Proteins

J. Kevin Foskett and Don-On Daniel Mak

I. Overview 235
II. Introduction 236
III. Cytoplasmic Ca$^{2+}$ Regulation of IP$_3$R Channel Gating 237
IV. Ca$^{2+}$ Binding Protein Regulation of IP$_3$R Channel Gating 263
References 267

CHAPTER 12 Regulation of Inositol 1,4,5-Trisphosphate Receptors by Phosphorylation and Adenine Nucleotides

Matthew J. Betzenhauser and David I. Yule

I. Overview 273
II. Regulation of IP$_3$R by Phosphorylation 274
III. Regulation of IP$_3$R by Adenine Nucleotides 283
References 292

CHAPTER 13 Role of Thiols in the Structure and Function of Inositol Trisphosphate Receptors

Suresh K. Joseph

I. Overview 299
II. Introduction 300
III. Regulation of IP$_3$R Function by Changes in Thiol Redox State 300
IV. Comparison of Thiol Regulation of IP$_3$Rs and RyRs 308
V. Cysteine Residues as Probes of IP$_3$R Structure 310
VI. Future Directions 314
References 315
CHAPTER 14 Inositol 1,4,5-Triphosphate Receptor, Calcium Signaling, and Polyglutamine Expansion Disorders

Ilya Bezprozvanny

I. Overview 323
II. Huntington's Disease, Spinocerebellar Ataxia Type 2, and Spinocerebellar Ataxia Type 3 324
III. Mutant Huntingtin Specifically Sensitizes IP3R1 to IP3 325
IV. Mutant Huntingtin Activates NR2B-Containing NMDA Receptors 326
V. Deranged Ca2+ Signaling and Apoptosis of HD MSN 329
VI. IP3R and Abnormal Ca2+ Signaling in SCA2 Neurons 330
VII. IP3R and Abnormal Ca2+ Signaling in SCA3 Neurons 332
VIII. Ca2+ Blockers and Perspectives for Clinical Intervention in HD and SCA Patients 333

References 335

Index 343